LeetCode Solution, Easy, 1158. Market Analysis I

1158. Market Analysis I

題目敘述

SQL Schema >

Create table If Not Exists Users (user_id int, join_date date, favorite_brand varchar(10)) Create table If Not Exists Orders (order_id int, order_date date, item_id int, buyer_id int, seller_id int) Create table If Not Exists Items (item_id int, item_brand varchar(10)) Truncate table Users insert into Users (user_id, join_date, favorite_brand) values ('1', '2018-01-01', 'Lenovo') insert into Users (user_id, join_date, favorite_brand) values ('2', '2018-02-09', 'Samsung') insert into Users (user_id, join_date, favorite_brand) values ('3', '2018-01-19', 'LG') insert into Users (user_id, join_date, favorite_brand) values ('4', '2018-05-21', 'HP') Truncate table Orders insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('1', '2019-08-01', '4', '1', '2') insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('2', '2018-08-02', '2', '1', '3') insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('3', '2019-08-03', '3', '2', '3') insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('4', '2018-08-04', '1', '4', '2') insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('5', '2018-08-04', '1', '3', '4') insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('6', '2019-08-05', '2', '2', '4') Truncate table Items insert into Items (item_id, item_brand) values ('1', 'Samsung') insert into Items (item_id, item_brand) values ('2', 'Lenovo') insert into Items (item_id, item_brand) values ('3', 'LG') insert into Items (item_id, item_brand) values ('4', 'HP')

Table: Users

+----------------+---------+ | Column Name | Type | +----------------+---------+ | user_id | int | | join_date | date | | favorite_brand | varchar | +----------------+---------+ user_id is the primary key of this table. This table has the info of the users of an online shopping website where users can sell and buy items.

Table: Orders

+---------------+---------+ | Column Name | Type | +---------------+---------+ | order_id | int | | order_date | date | | item_id | int | | buyer_id | int | | seller_id | int | +---------------+---------+ order_id is the primary key of this table. item_id is a foreign key to the Items table. buyer_id and seller_id are foreign keys to the Users table.

Table: Items

+---------------+---------+ | Column Name | Type | +---------------+---------+ | item_id | int | | item_brand | varchar | +---------------+---------+ item_id is the primary key of this table.

Write an SQL query to find for each user, the join date and the number of orders they made as a buyer in 2019.

Return the result table in any order.

The query result format is in the following example.

Example 1:

Input: Users table: +---------+------------+----------------+ | user_id | join_date | favorite_brand | +---------+------------+----------------+ | 1 | 2018-01-01 | Lenovo | | 2 | 2018-02-09 | Samsung | | 3 | 2018-01-19 | LG | | 4 | 2018-05-21 | HP | +---------+------------+----------------+ Orders table: +----------+------------+---------+----------+-----------+ | order_id | order_date | item_id | buyer_id | seller_id | +----------+------------+---------+----------+-----------+ | 1 | 2019-08-01 | 4 | 1 | 2 | | 2 | 2018-08-02 | 2 | 1 | 3 | | 3 | 2019-08-03 | 3 | 2 | 3 | | 4 | 2018-08-04 | 1 | 4 | 2 | | 5 | 2018-08-04 | 1 | 3 | 4 | | 6 | 2019-08-05 | 2 | 2 | 4 | +----------+------------+---------+----------+-----------+ Items table: +---------+------------+ | item_id | item_brand | +---------+------------+ | 1 | Samsung | | 2 | Lenovo | | 3 | LG | | 4 | HP | +---------+------------+ Output: +-----------+------------+----------------+ | buyer_id | join_date | orders_in_2019 | +-----------+------------+----------------+ | 1 | 2018-01-01 | 1 | | 2 | 2018-02-09 | 2 | | 3 | 2018-01-19 | 0 | | 4 | 2018-05-21 | 0 | +-----------+------------+----------------+

題目翻譯

這邊有三張表 Users, Orders, Items,找出每個使用者加入的時間和在 2019 年購買了多少訂單,不要求排序。

解法解析

這邊有提到幾點說明為什麼不使用 WHERE 為什麼不使用 ISNULL,因為按照 SQL 執行的順序會是:

  1. FROM
  2. WHERE
  3. GROUP BY
  4. HAVING
  5. SELECT
  6. ORDER BY

如果我們在 WHERE 子句中使用 Year is 2019,它將在執行 GROUP BY 或 SELECT(COUNT)之前,先移除那些沒有在 2019 年下單的用戶,這意味著我們會錯過那些在 2019 年沒有下單但仍需要在最終結果集中包含的用戶,並為他們的 orders_in_2019 設置為 0。相反,我們使用 LEFT JOIN 來將 Users 表格與 Orders 表格連接起來,透過這個方式篩選出只有當 buyer_id 和 user_id 相符且 order_date 的年份為 2019 的行,這樣就能確保所有的用戶都包含在最終結果集中,即使他們在 2019 年沒有下單。

解法範例

MySQL

# Write your MySQL query statement below
SELECT u.user_id AS buyer_id,
    join_date,
    COUNT(order_date) AS orders_in_2019
FROM Users as u
    LEFT JOIN Orders as o ON u.user_id = o.buyer_id
    AND YEAR(order_date) = '2019'
GROUP BY u.user_id

Did you find this article valuable?

Support 攻城獅 by becoming a sponsor. Any amount is appreciated!