1029. Two City Scheduling
題目敘述
A company is planning to interview 2n
people. Given the array costs
where costs[i] = [aCosti, bCosti]
, the cost of flying the i**th
person to city a
is aCosti
, and the cost of flying the i**th
person to city b
is bCosti
.
Return the minimum cost to fly every person to a city such that exactly n
people arrive in each city.
Example 1:
Input: costs = [[10,20],[30,200],[400,50],[30,20]]
Output: 110
Explanation:
The first person goes to city A for a cost of 10.
The second person goes to city A for a cost of 30.
The third person goes to city B for a cost of 50.
The fourth person goes to city B for a cost of 20.
The total minimum cost is 10 + 30 + 50 + 20 = 110 to have half the people interviewing in each city.
Example 2:
Input: costs = [[259,770],[448,54],[926,667],[184,139],[840,118],[577,469]]
Output: 1859
Example 3:
Input: costs = [[515,563],[451,713],[537,709],[343,819],[855,779],[457,60],[650,359],[631,42]]
Output: 3086
Constraints:
2 * n == costs.length
2 <= costs.length <= 100
costs.length
is even.1 <= aCosti, bCosti <= 1000
題目翻譯
今天公司需要面試 2n
個人,但因為人太多所以需要分散到兩個城市 A, B 來面試。有一個陣列 costs
儲存了第 i
個人分別到 A, B 城市的花費。costs[0] = [40, 20]
,代表第一個人到 A 城市要 40,到 B 城市要 20。然後要計算出分配後最少公司需要花費多少錢。
解法解析
這題很簡單的想法,我要最少的花費那當然就是每個人的花費中取最小的就好了。但是這樣就會有個盲點是,不要忘記了還要是平均分攤兩個城市,不然的話像是 Example2:259 A, 54 B, 667 B, 139 B, 118 B, 469 B
,就會發現 B 太多了,所以排序的條件需要變成使用價差的方式 aCost - bCost
。然後將排序後的結果裁半,一半到 A 一半到 B。
解法範例
Go
func twoCitySchedCost(costs [][]int) int {
sort.Slice(costs, func(i, j int) bool {
return costs[i][0]-costs[i][1] < costs[j][0]-costs[j][1]
})
var total int
n := len(costs) / 2
for i := 0; i < n; i++ {
total += costs[i][0] + costs[i+n][1]
}
return total
}
JavaScript
/**
* @param {number[][]} costs
* @return {number}
*/
var twoCitySchedCost = function (costs) {
costs.sort((a, b) => a[0] - a[1] - (b[0] - b[1]));
let total = 0;
const n = costs.length / 2;
for (let i = 0; i < n; i++) {
total += costs[i][0] + costs[i + n][1];
}
return total;
};
Kotlin
class Solution {
fun twoCitySchedCost(costs: Array<IntArray>): Int {
costs.sortWith(compareBy { it[0] - it[1] })
val n = costs.size / 2
return costsByDiffs.withIndex().sumBy {
it.value[ if (it.index < n) 0 else 1 ]
}
}
}
PHP
class Solution
{
/**
* @param Integer[][] $costs
* @return Integer
*/
function twoCitySchedCost($costs)
{
usort($costs, function ($a, $b) {
return ($a[0] - $a[1]) - ($b[0] - $b[1]);
});
$total = 0;
$n = count($costs) / 2;
for ($i = 0; $i < $n; $i++) {
$total += $costs[$i][0] + $costs[$i + $n][1];
}
return $total;
}
}
Python
class Solution:
def twoCitySchedCost(self, costs: List[List[int]]) -> int:
# Sort by a gain which company has
# by sending a person to city A and not to city B
costs.sort(key=lambda x: x[0] - x[1])
total = 0
n = len(costs) // 2
# To optimize the company expenses,
# send the first n persons to the city A
# and the others to the city B
for i in range(n):
total += costs[i][0] + costs[i + n][1]
return total
Rust
impl Solution {
pub fn two_city_sched_cost(costs: Vec<Vec<i32>>) -> i32 {
let mut costs = costs;
costs.sort_by(|a, b| (a[0] - a[1]).cmp(&(b[0] - b[1])));
let mut total = 0;
let n: usize = costs.len() / 2;
for i in 0..n {
total += costs[i][0] + costs[i + n][1];
}
total
}
}
Swift
class Solution {
func twoCitySchedCost(_ costs: [[Int]]) -> Int {
var costs = costs
costs.sort { $0[0] - $0[1] < $1[0] - $1[1] }
var total = 0
let n = costs.count / 2
for i in 0..<n {
total += costs[i][0] + costs[i + n][1]
}
return total
}
}